

Placing some of java's built-in

String related methods under the

spotlight.

b

y J

 a

 b

 e

 r A

 d

 e

 e

 b

String Handling in Java

N

 C

 D

2015-01-13

 1

String handling in java

Introduction ..2

The different String Constructors .. 3

Dealing with Stings .. 7

Built-in methods associated with String objects...................................11

Fetching String properties ... 11

 Char extraction methods ... 13

String searching methods .. 16

 String modifying methods ... 18

Conclusion ... 23

References .. 24

 2

 Introduction

In this research we will figure out how to deal with a string in the

programming language "java"

A string is a sequence of characters and that's known for any

programmer, a string is implemented as a character array in many

programming languages but in java it's implemented as an object

which gives advantages to dealing with strings and adds extra

features to make string handling more convenient by making

methods that cannot be used with character arrays this also

provides the ability to construct a string by many ways depending

on the user's need.

There are a couple of disadvantages of string handling in

java because when creating a string object it cannot be modified

so when altering a string another object is created with the new

"string value" assigned to it, but if you want a modifiable string

there's another built-in class made for this purpose called

StringBuffer and its String objects could be modified.

So by now you know what a string is and you have a simple

idea –that we'll go deeper inside- how java dealt with it, next we

will explain different ways of creating a String in java, the built-in

methods related to a String and String concatenation with other

data type.

So at the end of this research the reader could hopefully

handle a String in an easier way when he has to.

 3

The Different String Constructors :

In java the String class holds many constructors and we're going

to talk about the most common amongst them.

Creating an empty String :

 String s = new String();

This creates an instance of the String class with no chars inside, no

one is likely to use this, because you need a string that has an

initial value using the following constructors :

- String(char chars[]) :

This constructor creates a String with an initial value of a given

char array.

Ps : when you see the word string with its first letter capitalized

this means we're talking about String objects, if not it's an

ordinary character sequence.

Here's an example :

char chars[] = { 'a', 'b', 'c', 'd', 'e', 'f' };

String s = new String(chars);

This initializes s with the string "abcdef" (this gives the created

String a value that is the joined chars of the given char array

which here are 'a','b','c','d','e','f' forming the string "abcdef"

when joined together).

 4

- String(char chars[], int start_index, int chars_num)

This constructor is a "modification" of the previous one; here you

can chose which char to start the string with using the second

parameter which is an integer and its length using the third

parameter that's also an integer.

Here's an example :

char chars[] = { 'a', 'b', 'c','d','e','f' };

String s = new String(chars, 2, 3);

This initializes s with the string "cde" (this gives the created String

a value that is a string starting with the char holding the index 2

which is 'c' plus the following two forming the string "cde" which

has the length of three as given).

Ps : the first element of an array has an index of 0 and not 1.

- String(String string_object)

This one is used to give a String the same value of another.

An example :

String s1 = new String("Java");

String s2 = new String(s1);

System.out.println(s1);

System.out.println(s2);

Another example :

char c[] = {'J', 'a', 'v', 'a'};

 5

String s1 = new String(c);

String s2 = new String(s1);

System.out.println(s1);

System.out.println(s2);

s1 contains "Java" and s2 has s1's same value So the output for

both examples is :

 Java

 Java

- String(byte ascii_chars[])

- String(byte ascii_chars, int start_index, int chars_num)

This constructor is used to initialize a String with a value of the

byte array's components after they are converted to chars; what

actually happens is each of the bytes represents if right to say an

ascii value of a specific char so that's how the conversion

happens.

An example might explain better :

byte ascii[] = {65, 66, 67, 68, 69, 70 };

String s1 = new String(ascii);

System.out.println(s1);

String s2 = new String(ascii, 2, 3);

System.out.println(s2);

Here ascii is a byte array and s1 contains its byte sequence after

being converted to a char sequence so each component is

converted to a matching char for example 65 is converted to 'A'

and so on, that means s1 holds "ABCDEF" within it and s2 holds

"CDE", that makes the output :

 6

ABCDEF

CDE

The constructors listed above are the most common ones for a

java programmer, so hopefully they were clear enough.

 7

Dealing With a String:

Now we're going to explore how to deal with a String and not to

create one.

Strings are an important part of any programming language, java

took care of making it more easier to handle them, either by the

automatic creation of a string that's provided when using the

string literals (the " ") or by the concatenation of multiple Strings

using the + operator and last but not least the conversion of other

data types to a string representation. Java made it easier on its

users to perform such operations allowing them to be done

automatically so to add clarity.1

Ps : there are explicit methods available to perform all of these

functions listed above.

- String Literals :

Most of the examples I've listed above show how to explicitly

create a String instance from an array of chars by using the new

operator, but there's an easy way to do so using the string literal.

Java automatically interprets almost anything in a string literal as

an object of type String (constructs the String object when

encountered by a string literal)

An example might speak for it better :

char chars[] = { 'a', 'b', 'c' };

1
 Introduction to programming using java, by David J. Eck.

 8

String s1 = new String(chars);

String s2 = "abc";

Both s1 and s2 are initialized in two different ways but same

values (s1 from a char array & s2 using literals), so s1 and s2 are

equivalent.

Knowing that for each string literal a String object is created, the

user should know that he could use a string literal any place a

String object is used, so he can call methods directly on a quoted

string like it's an object reference.

- String concatenation :

Java doesn't allow any operators to be applied on a String except

for the + operator, which is able to concatenate two Strings

producing one String object as a result.

This allows the user to chain a series of + operators together.

An example :

String age = "9";

String s = "He is " + age + " years old.";

System.out.println(s);

This example's output is :

He is 9 years old.

This concatenation is most often used on a long string by breaking

it into smaller piece to prevent its "wrap around" within a source

code.

 9

- String concatenation with other data types :

Java allows concatenating strings with other data types such as an

integer.

Here's an example :

int age = 9;

String s = "He is " + age + " years old.";

System.out.println(s);

In this example age is an int and not a String but the output is the

same :

He is 9 years old.

And that's caused by the automatic conversion applied on age

converting it into its string representation within a String object.

The String is afterwards concatenated as before, meaning that the

compiler will convert an operand to its string equivalent

whenever the other operand of the + is a String.

The latter feature has its disadvantages though, still, it's not a big

problem if the user pays little attention not to mix other types of

operations with string concatenation expressions or else he might

find some surprising results such as the following example :

String s1 = "four = " + 2 + 2;

System.out.println(s1);

The output is going to be :

 Four = 22

 10

Unlike the user's supposed output (Four = 4), one, the reader

might have also expected too, but the operator precedence

caused the concatenation of "Four =" with the string equivalent of

2 to take place first.

This result is then concatenated with the string equivalent of 2

another time.

But this is easily avoided simply if the user did the following :

 String s1 = "four = " + (2 + 2);

This gives priority to what's inside the parentheses, which is

adding the two integer values inside then concatenating the string

"Four = " with the result, giving the wanted output :

 Four = 4

 11

Built-in methods associated with

String objects :

There are many methods used in java to deal with a String (search

it, get its properties, extract a specific part of it...) and in this

chapter we’re going over most of them.

Fetching String properties methods :

- String Length :

when we say String length we mean the number of characters

that compose a specific String.

To know the length of a String all we have to do is to call the

length() method on that String.

The latter is a method that returns a value of type integer (that's

the number of chars in the given String) and takes no parameters.

An example of calling this method :

char chars[] = { 'a', 'b', 'c' };

String s = new String(chars);

System.out.println(s.length());

The output will be :

 3

- The toString() method :

 12

This is one of the most common string associated method,

because once overridden each programmer could define his own

readable version of an object of classes created by him/her.

This method is implemented by every class because it's defined by

the if right to say "greatest father" of all classes in java, Object.

This method's general form is :

 String toString()

To implement this method all you have to do is to return a String

object with your own human-readable version that appropriately

describes an object of your class.

When the toString() method is overridden for a class created by a

programmer he/she allows this class to be fully integrated into

java's programming environment, so they could be used in print()

or println() statements and in concatenation expressions.2

Here's a little program to explain this more :

class Box

{

double width;

double height;

double depth;

Box(double w, double h, double d)

{

width = w;

height = h;

depth = d;

}

// here starts our overridden version of toString() :

public String toString()

2
 Learning java, by Pat Niemeyer, Jonathan Knudson.

 13

 {

return "Dimensions are " + width + " by " +

depth + " by " + height + ".";

}

}

class toStringDemo

{

public static void main(String args[])

 {

Box b = new Box(10, 12, 14);

String s = "Box b: " + b; // here the overridden

toString method has been called automatically

System.out.println(b); //the same thing happened

here

System.out.println(s);

}

}

The output is going to be :

Dimensions are 10.0 by 14.0 by 12.0

Box b: Dimensions are 10.0 by 14.0 by 12.0

So the Box's toString() is automatically invoked when a Box object

is used in a concatenation expression or in a call to println().

Char Extraction Methods :

Java provides many ways to deal not just with a String a whole but

with parts of it, and we're going to view most of them.

Characters comprising a string within a String object cannot be

indexed like they were a character array, but java provided many

methods that offer an index into the string for their operation.

Ps : the String indexes begin with a value of 0, just like an array.

 14

- The charAt() method :

It is used to obtain one single character from a given String, so you

can refer directly to this char.

Its general form is :

Char charAt(int index)

Where index is the index of the wanted character, and it shouldn't

be negative or out of the given string's bounds.

An example :

char ch;

ch = "abc".charAt(1);

Here the method returned the value 'b' and it was then assigned

to ch.

- the getChar() method :

This method is used to extract more than one character from a

String.

Its general form is :

Void getChars(int start_index, int end_index, char

target[], int target_start)

start_index defines the index where the extraction begins at.

end_index defines the index where the extraction ends plus one.

 15

So the substring contains chars that hold indexes from start_index

until end_index – 1 and will be copied to a characters array which

is target starting at an index that is target_start.

Ps : to avoid some problems make sure the target array is large

enough to hold the substring within.

An example might explain better :

class getCharsDemo

{

 public static void main(String args[])

{

String s = "hello everybody";

 int start = 7;

int end = 12;

 char target[] = new char[end - start];

s.getChars(start, end, target, 0);

System.out.println(target);

}

}

so if we apply what we said back, the output will be :

every

- The getBytes() method :

It is an alternative to the getChars() method, the only difference

here is that this method stores the characters in a bytes array.

The method uses the default character-to-byte conversion given

by the used platform.

Its simplest form is :

 16

 Byte[] getbytes()

There are other forms of this method too.

There are many uses related to this method the most common

one is exporting a String value into an environment that does not

support 16-bit Unicode characters.

- The toCharArray() method :

This one is used to convert all the characters in a String into a

characters array easily.

Its general form is :

Char[] toCharArray()

This method is not much of a difference compared to the

getChars() because both of them can be used for the same

purpose with more ability provided by the getChars() method.

String searching methods :

There are two methods used to search a String for a specific

character or substring, which are :

- indexOf()

- lastIndexOf()

the first one searches for the first occurrence of a character or a

substring, while the second one searches for the last.

 17

These methods are overloaded in many different ways (has many

forms), but in all cases they return the index at which the

character or substring was found, or if not they return -1.

To search for the first occurrence of a character or substring :

Int indexOf(int ch)

Int indexOf(String str)

And for the last occurrence of a character or a substring :

Int lastIndexOf(int ch)

Int lastIndexOf(String str)

Where str and ch specifies the substring or char to be searched

for.

There's a form to these methods where you can specify an index

to be a starting point to begin the search by passing another

parameter to the methods :

Int indexOf(int ch, int start_index)

Int indexOf(String str, int start_index)

Int lastIndexOf(int ch, int start_index)

Int lastIndexOf(String str, start_index)

indexOf() runs either from zero or from the specified index to the

end of the string.

 18

lastIndexOf() runs either from the end of the string or from the

specified index to zero.

The next example is a little bit long but it should explain better :

String s = "Now is the time for all good men " + "to come to the

aid of their country.";

System.out.println(s); System.out.println("indexOf(t) = " +

s.indexOf('t'));

System.out.println("lastIndexOf(t) = " + s.lastIndexOf('t'));

System.out.println("indexOf(the) = " + s.indexOf("the"));

System.out.println("lastIndexOf(the) = " + s.lastIndexOf("the"));

System.out.println("indexOf(t, 10) = " + s.indexOf('t', 10));

System.out.println("lastIndexOf(t, 60) = " + s.lastIndexOf('t', 60));

System.out.println("indexOf(the, 10) = " + s.indexOf("the", 10));

System.out.println("lastIndexOf(the, 60) = " + s.lastIndexOf("the",

60));

The output will be :

Now is the time for all good men to come to the aid of their

country.

indexOf(t) = 7

lastIndexOf(t) = 65

indexOf(the) = 7

lastIndexOf(the) = 55

indexOf(t, 10) = 11

lastIndexOf(t, 60) = 55

indexOf(the, 10) = 44

lastIndexOf(the, 60) = 55

String modifying methods :

as we previously said Strings in java are immutable (can't be

modified),but java provided a couple of ways to overcome this

problem, the first is the StringBuffer class3 and the other way is

3
 Teach yourself java in 21 days, by Laura Lemay, Charles L. Perkins.

 19

using methods provided to modify a String without creating a new

String object.

- Substring()

This one has two forms and its uses are to extract a substring.

Its first form is :

String substring(int start_index)

Where start_index is the index defining the beginning of the

extraction.

This form returns a substring starting from the char with the given

index to the end of the given String.

The other form gives the ability to define the ending index :

 String substring(int start_index, int end_index)

Here the substring begins at the char with the index start_index

and ends at the char with the index end_index – 1 .

An example maybe…

class StringReplace

{

 public static void main(String args[])

{

 String org = "This is a test. This is, too.";

 String search = "is";

String sub = "was";

 String result = "";

 20

 int i;

do

{

System.out.println(org);

i = org.indexOf(search);

if(i != -1)

{

result = org.substring(0, i);

result = result + sub;

result = result + org.substring(i +

search.length());

org = result;

}

 } while(i != -1);

}

}

The output for this example will be :

This is a test. This is, too.

Thwas is a test. This is, too.

Thwas was a test. This is, too.

Thwas was a test. Thwas is, too.

Thwas was a test. Thwas was, too.

- Concat()

This method allows you to concatenate two strings together.

Its general form is :

String concat(String str)

This method creates a new object that contains the invoking

string with the contents of str added to the end, so it works just

like the + operator.

An example :

 21

String s1 = "one";

String s2 = s1.concat("two");

So this adds s2 to s1, so s2 has a value of "onetwo"

And it's just like the following :

String s1 = "one";

String s2 = s1 + "two";

- Replace()

This one replaces all of the occurrences of a character in the given

string with another character.

It has the following general form :

 String replace(char original, char replacement)

Here, original specifies the character to be replaced by the

character specified by replacement, then the resulting string is

returned.

Example :

String s = "Hello".replace('l', 'w');

In this example s is given a value of "Hewwo".

- Trim()

this is the last method to be examined in this category.

It is used to return a copy of the given string from which any

leading and trailing whitespaces has been removed.

 22

Its general form is :

String trim()

An example :

String s = " Hello World ".trim();

this gets the string "Hello World" contained in s.

This method is quite useful when you process user commands,

because a user can unintentionally leave some whitespaces when

typing some commands.

 23

conclusion

Java added many methods to deal with a String

(knowing its length or modifying it…etc) because it is

a very important if right to say "type"; it is used in

almost every language and is strongly needed in

most programs.

The ways java made this happen vary from the many

ways to construct a String to built-in methods used

to modify a String since it's immutable and last but

not least giving the ability to concatenate String with

each other and with other data types.

I have not covered every way or method java added,

but as we have seen I've hopefully covered many

features that are commonly known amongst every

java programmer, these additions made dealing with

Strings a piece of cake to almost any user at any

level.

 24

references :

Java 2: The complete reference, fifth edition, By Herbert Schildt.

Introduction to programming using java, by David J. Eck.

Getting started with java (version 8)

