

String matching algorithms

 تقديم الطالب: سليمان ضاهر

 اشراف المدرس: علي جنيدي

2016/2017اسي:للعام الدر

The Introduction
The introduction to information theory is quite simple. The invention of writing

occurred 5000 years ago, but no other culture thought of manipulating the written data
more than the people of IT revolution. Coding makes our life easier, creates huge hopes in
domains of security, compression and data transmission. No other introduction to coding
would be more decent than the string matching theory. A variety of algorithms were
discussed during this paper

Abstract

We formalize the string-matching problem as follows. We assume that the text is an array T
[1 . . n] of length n and that the pattern is an array P[1 . . m] of length m ≤ n. We further
assume that the elements of P and T are characters drawn from a finite alphabet . For
example, we may have = {0,1} or = {a, b,..., z}. The character arrays P and T are often
called strings of characters. We say that pattern P occurs with shift s in text T (or,
equivalently, that pattern P occurs beginning at position s + 1 in text T) if 0 ≤ s ≤ n − m
and T [s + 1 . .s + m] = P[1 . . m] (that is, if T [s + j] = P[j], for 1 ≤ j ≤ m). If P occurs with
shift s in T , then we call s a valid shift; otherwise, we call s an invalid shift. The string-
matching problem is the problem of finding all valid shifts with which a given pattern P
occurs in a given text T. and in this research we will study the most important algorithms
that do this mission

Contents

The Introduction 2

Abstract 2

Table of figures 4

The string matching algorithms and its importance 5

The naive string-matching 5

Matching steps: 5

Complexity: 6

Karp-Rabin algorithm 7

String to integer converter (Horner’s rule) 7

Matching steps 9

Complexity 10

Knuth-Morris-Pratt algorithm 11

The prefix(π)function for a pattern 11

Matching steps 13

Complexity 14

Boyer-Moore algorithm 14

Right-to-left scan 14

Bad character rule 14

Good suffix rule 15

Putting it together 16

complexity 18

Results and Conclusion 19

References 20

Table of figures
Figure 1 an example of the naïve string matcher ... 5

Figure 2 calculating t(s+1) using t(s)... 8

Figure 3an example of Karp-Rabin matcher and the spurios hit 8

Figure 4 skipping the shifts that must necessarily match the characters of text the using the
prefix compute function ... 11

Figure 5 an example of KMP matcher ... 12

Figure 6 skipping shifts using the bad character rule .. 14

Figure 7 skipping useless shifts using the good suffix rule ... 15

Figure 9using the good suffix rule to shift the pattern to the right place 15

Figure 8 using the good suffix rule to shift the pattern to the right place 15

Figure 10 using the good suffix rule to shift the pattern to the right place 16

Figure 11 an example of the Boyer-Moore matcher ... 16

file:///F:/String%20matching%20consists%20in%20finding%20one1.docx%23_Toc471163777
file:///F:/String%20matching%20consists%20in%20finding%20one1.docx%23_Toc471163778
file:///F:/String%20matching%20consists%20in%20finding%20one1.docx%23_Toc471163779
file:///F:/String%20matching%20consists%20in%20finding%20one1.docx%23_Toc471163780
file:///F:/String%20matching%20consists%20in%20finding%20one1.docx%23_Toc471163780
file:///F:/String%20matching%20consists%20in%20finding%20one1.docx%23_Toc471163781
file:///F:/String%20matching%20consists%20in%20finding%20one1.docx%23_Toc471163782
file:///F:/String%20matching%20consists%20in%20finding%20one1.docx%23_Toc471163783
file:///F:/String%20matching%20consists%20in%20finding%20one1.docx%23_Toc471163784
file:///F:/String%20matching%20consists%20in%20finding%20one1.docx%23_Toc471163785
file:///F:/String%20matching%20consists%20in%20finding%20one1.docx%23_Toc471163786
file:///F:/String%20matching%20consists%20in%20finding%20one1.docx%23_Toc471163787

Figure 1 an example of the naïve string matcher

The string matching algorithms and its importance

Finding all occurrences of a pattern in a text is a problem that arises frequently in text-
editing programs. Typically, the text is a document being edited, and the pattern searched
for is a particular word supplied by the user. Efficient algorithms for this problem can
greatly aid the responsiveness of the text-editing program. String-matching algorithms are
also used, for example, to search for particular patterns in DNA sequences.

The naive string-matching [1]

The brute force algorithm consists in checking, at all positions in the text between 0 and n-
m

The naive string-matching procedure can be interpreted graphically as sliding a “template”
containing the pattern over the text, noting for which shifts all of the characters on the

template equal the corresponding characters in the text, as illustrated

Matching steps:

1. n ← length[T]
2. m ← length[P]
3. for s ← 0 to n − m
4. do if P[1 . .m] = T [s + 1 . . s + m]
5. then print “Pattern occurs with shift” s

First there is a for loop that considers each possible shift explicitly. Then there is a test to
determine whether the current shift is valid or not(4); this test involves an implicit loop(4)
to check corresponding character positions

Complexity:
Procedure NAIVE-STRING-MATCHER takes time O((n − m + 1)m), and this

bound is tight in the worst case. For example, consider the text string an (a string

of n a’s) and the pattern am. For each of the n−m+1 possible values of the shift s,

the implicit loop on line 4 to compare corresponding characters must execute m

times to validate the shift. The worst-case running time is thus O((n − m + 1)m),

which is O(n2) if m = [n/2]. The running time of NAIVE-STRING-MATCHER is

equal to its matching time, since there is no preprocessing.

As we shall see, NAIVE-STRING-MATCHER is the simplest way to match a pattern
with a text because it just depends on one loop and it doesn’t require any preprocessing
functions for the pattern and the text, but it is inefficient because information gained about
the text for one value of s is entirely ignored in considering other values of s. Such
information can be very valuable, however. For example, if P = aaab and we find that s = 0
is valid (where (s) is the first index of the matching text), then none of the shifts 1, 2, or 3
are valid, since T [4] = b. In the following sections, we examine several ways to make effective

use of this sort of information. The algorithm can be designed to stop on either the first
occurrence of the pattern, or upon reaching the end of the text.

Karp-Rabin algorithm
Let’s view a string of k consecutive characters as representing a length-k decimal number.
The character string 31415 thus corresponds to the decimal number 31,415. Given the dual

interpretation of the input characters as both graphical symbols and digits, we find

it convenient in this section to denote them as we would digits, in our standard text

font.

String to integer converter (Horner’s rule) [1]

Given a pattern P [1 . .m], we let p denote its corresponding decimal value. In

a similar manner, given a text T [1 . . n], we let 𝑡𝑠 denote the decimal value of the

length-m substring T [s + 1 . . s + m], for s = 0, 1, . . . , n − m. Certainly, 𝑡𝑠 = p

if and only if T [s + 1 . . s + m] = P[1 . .m]; thus, s is a valid shift if and only

if 𝑡𝑠 = p.

We can compute p in time O(m) using Horner’s rule

 p = P[m] + 10 P[m − 1] + 102P[m − 2]+· · ·+10𝑚−1P[2] + 10𝑚P[1]

The value t0 can be similarly computed from T [1 . . m] in time O(m).

To compute the remaining values 𝑡1, 𝑡2, . . . , 𝑡𝑛−𝑚in time O(n−m), it suffices to

observe that ts+1 can be computed from 𝑡𝑠 in constant time, since

𝑡𝑠+1 = 10(𝑡𝑠 − 10m−1T [s + 1]) + T [s + m + 1] .

For example, if m = 5 and 𝑡𝑠 = 31415, then we wish to remove the high-order digit

T [s +1] = 3 and bring in the new low-order digit (suppose it is T [s +5+g1] = 2)

to obtain 𝑡𝑠+1= 10(31415 − 10000 · 3) + 2 = 14152 .

Subtracting 10m−1T [s +1] removes the high-order digit from 𝑡𝑠 , multiplying the

result by 10 shifts the number left one position, and adding T [s +m +1] brings in

the appropriate low-order digit. The only difficulty with this procedure is that p and 𝑡𝑠
may be too large to work with conveniently. If P contains m characters, then assuming that
each arithmetic operation on p (which is m digits long) takes “constant time” is
unreasonable. Fortunately, there is a simple cure for this problem, compute p and the𝑡𝑠’s
modulo a suitable modulus q

The modulus q is typically chosen as a prime such that 10q just fits within one computer
word, which allows all the necessary computations to be performed with single-precision
arithmetic. In general, with a d-array alphabet {0, 1, . . . , d − 1}, we choose q so that dq
fits within a computer word and adjust the recurrence equation to work modulo q, so that
it becomes

𝑡𝑠+1= (d (𝑡𝑠− T [s + 1]h) + T [s + m + 1]) mod q,

Figure 2 calculating t(s+1) using t(s)

Figure 3an example of Karp-Rabin matcher and the spurios hit

The solution of working modulo q is not perfect, however, since 𝑡𝑠≡ p (mod q) does not
imply that 𝑡𝑠 = p. On the other hand, if 𝑡𝑠≡ p (mod q), then we definitely have that 𝑡𝑠= p,
so that shift s is invalid. We can thus use the test 𝑡𝑠≡ p (mod q) as a fast heuristic test to rule
out invalid shifts s. Any shift s for which 𝑡𝑠≡ p (mod q) must be tested further to see if s is
really valid or we just have a spurious hit. This testing can be done by explicitly checking
the condition P[1 . .m] = T [s + 1 . . s + m]. If q is large enough, then we can hope that spurious

hits occur infrequently enough that the cost of the extra checking is low.

Matching steps [2]

1 n ← length[T]

2 m ← length[P]

3 h ← dm−1 mod q

4 p ← 0

5 t0 ← 0

6 for i ← 1 to m do (Preprocessing).

7 p ← (dp + P[i]) mod q

8 t0 ← (dt0 + T [i]) mod q end for

9 for s ← 0 to n – m do (Matching)

10 if p = 𝑡𝑠 then

11 if P[1 . .m] = T [s + 1 . . s + m] then

12 print s end if end if

13 if s < n – m then

14 𝑡𝑠+1← (d(𝑡𝑠− T [s + 1]h) + T [s + m + 1]) mod q end if end for

The procedure RABIN-KARP-MATCHER works as follows. All characters are
interpreted as radix-d digits. The subscripts on t are provided only for clarity; the program
works correctly if all the subscripts are dropped. Line 3 initializes h to the value of the high
order digit position of an m-digit window. Lines 4–8 compute p as the value of P[1 . .m]

mod q and t0 as the value of T [1 . .m] mod q. The for loop of lines 9–14 iterates through
all possible shifts s, maintaining the following invariant: Whenever line 10 is executed, 𝑡𝑠 =
T [s + 1 . . s + m] mod q. If p = 𝑡𝑠 in line 10 (a “hit”), then we check to see if P[1 . . m] = T
[s +1 . . s +m] in line 11 to rule out the possibility of a spurious hit. Any valid shifts found
are printed out on line 12. If s < n − m (checked in line 13), then the for loop is to

be executed at least one more time, and so line 14 is first executed to ensure that the loop
invariant holds when line 10 is again reached. Line 14 computes the value of 𝑡𝑠+1 mod q
from the value of 𝑡𝑠 mod q in constant time.

Complexity [1]

RABIN-KARP-MATCHER takes O(m) preprocessing time, and its matching time

is O((n − m + 1)m) in the worst case, since (like the naive string-matching algorithm)

the Rabin-Karp algorithm explicitly verifies every valid shift. If P = 𝑎𝑚

and T = 𝑎𝑛, then the verifications take time O((n − m + 1)m), since each of the

n − m + 1 possible shifts is valid.

In many applications, we expect few valid shifts (perhaps some constant c of
them); in these applications, the expected matching time of the algorithm is only
O((n − m + 1) + cm) = O(n+m), plus the time required to process spurious hits.

Although the O ((n − m + 1)m) worst-case running time of this algorithm is no better than
that of the naive method, it works much better on average and in practice. It also
generalizes nicely to other pattern-matching problems.

Knuth-Morris-Pratt algorithm
We now present a linear-time string-matching algorithm due to Knuth, Morris, and Pratt.
Their algorithm depends on an auxiliary function called The prefix function π. It
encapsulates knowledge about how the pattern matches against shifts of itself. This
information can be used to avoid testing useless shifts in the naive pattern-matching
algorithm

The prefix(π)function for a pattern [3]

Consider the operation of the naive string matcher. That uses a particular shift s of a
template containing the pattern P = ababaca against a text T for this example, q = 5 of the
characters have matched successfully, but the 6th pattern character fails to match the
corresponding text character. The information that q characters have matched successfully
determines the corresponding text characters. Knowing these q text characters allows us to
determine immediately that certain shifts are invalid. In the example of the figure, the shift s
+ 1 is
necessarily invalid, since the first pattern character (a) would be aligned with a text
character that is known to match with the second pattern character (b). The shift s= s + 2
shown in part (b) of the figure, however, aligns the first three pattern characters with three
text characters that must necessarily match.

Figure 4 skipping the shifts that must necessarily match the
characters of text the using the prefix compute function

In the figure below, for the pattern P = ababababca and q = 8.
(a) The π function for the given pattern. Since π[8] = 6, π[6] = 4, π[4] = 2, and π[2] = 0,
by iterating π we obtain π∗[8] = {6, 4, 2, 0}. (b) We slide the template containing the
pattern P to the right and note when some prefix 𝑃𝑘 of P matches up with some proper
suffix of P8; this happens for k = 6, 4, 2, and 0. In the figure, the first row gives P, and the
dotted vertical line is drawn just after P8. Successive rows show all the shifts of P that cause
some prefix 𝑃𝑘 of P to match some suffix of P8. Successfully matched characters are shown
shaded. Vertical lines connect aligned matching characters.

portion of the text, it is a suffix of the string 𝑃𝑞 . Equation (32.5) can therefore be

interpreted as asking for the largest k < q Then, s’= s+(q−k) is the next potentially valid
shift.

This information can be used to speed up both the naive string-matching algorithm and
the finite-automaton matcher.

Figure 5 an example of KMP matcher

Matching steps [1]

KMP-MATCHER(T, P)

1. m ← length[P]
2. n ←length [T]
3. π ←COMPUTE-PREFIX-FUNCTION(p)
3. i←0, j←0
4. while(i+m<=n)do
5. while(t[i+j]==p[j])do
6. j←j+1
7. if(j>=m)
8. return i end while
9. i←i+ max(j-π [j-1],0)
10. j = π [j-1]end while
11. return -1

COMPUTE-PREFIX-FUNCTION(P)

1. m ← length[P]
2. π[1] ← 0
3. k ← 0
4. for q ← 2 to m do
5. while k > 0 and P[k + 1] ~= P[q] do
6. k ← π[k] end while
7. if P[k + 1] ==P[q] then
8. k ← k + 1 end if
9. π[q] ← k end for
10. return π

max(a,b)

1. if a>b
2. return a
3. else
4. return a

Complexity [3]

The running time of COMPUTE-PREFIX-FUNCTION is O (m).

and the average run time of the KMP matcher is O(n).

but when we search for a short pattern the KMP algorithm is not very good because it
depends on the repetition of characters in the pattern and when the pattern is short the
chance of repeating characters is very low.

Boyer-Moore algorithm
The Boyer-Moore algorithm is designed to skip the highest number of useless shifts using
the right to left scan, the bad character rule and the good suffix rule. These three ideas can
make the matching process faster and more convenient while searching in a long text
because they help to skip a lot of failing matching attempts.

Right-to-left scan:[4]

Instead of scanning the pattern from the left to the right, this algorithm starts scanning from
the right.

Bad character rule:[4]

we use this rule when a mismatch occurs, so we use the knowledge of the mismatched
character to skip alignments.

Let character (b) be the mismatched character in text (T). so we skip alignments until (b)
matches its opposite in pattern(P) or (P) moves past (b).

Figure 6 skipping shifts using the bad character rule

Good suffix rule:[4]

When some characters are matched, we can use the knowledge of the matched characters
to skip alignments.

Suppose that for some alignment of (P) and (T), substring (t) of (T) matches a suffix of (P),
but a mismatch occurs at the next position. Find the rightmost copy (t’) of (t) in (P) such
that (t’) is not a suffix of (P) and the character to the left of (t’) in (P) differs from the

character to the left of (t) in (P). Shift (P) so that (t’) in (P) is aligned with(t) in (T).

If there is no such t’, shift the left end of P past the left end of t in T by the least amount so
that a prefix of the shifted pattern matches a suffix of t in T.

If no such shift is possible, shift P by n places to the right.

Figure 7 skipping useless shifts using the good suffix rule

Figure 9 using the good suffix rule to shift the pattern to the right place

Figure 8using the good suffix rule to shift the pattern to the right place

If an occurrence of P is found, shift P by the least amount so that a proper prefix of the
shifted P matches a suffix of the occurrence of P in T. If no such shift is possible, shift P by
n places to the right

Putting it together [4]

After each alignment, use bad character or good suffix rule, whichever skips more

Figure 10 using the good suffix rule to shift the pattern to the right place

Figure 11 an example of the Boyer-Moore matcher

Matching steps:[2]

bmInitocc()

1. char a; int j;
2. for a←0 to alphabetsize
3. occ[a]=-1;
4. for j←0 to m-1
5. do a=p[j]
6. occ[a]=j end for

bmPreprocess1()

1. i←m, j←m+1
2. f[i] ←j;
3. while i>0 do
4. while j<=m and p[i-1]~= p[j-1]) do
5. If s[j]==0
6. s[j]=j-i
7. j=f[j] end while
8. i=i-1
9. j=j-1
10. f[i]=j; end while

bmPreprocess2

1. j←f[0]
2. for i←0 to m do
3. if s[i]==0
4. then s[i] ←j
5. if i==j
6. then j=f[j]
7. end for

max(a,b)

1. if a>b
2. return a
3. else
4. return a

bmSearch()

1. i←0
2. while i<=n-m do
3. j←m-1
4. while j>=0 and p[j]==t[i+j] do
5. j--
6. if j<0 then
7. return i
8. i←i+s[0] end if
9. else
10. i←i+max(s[j+1], j-occ[t[i+j]]) end while
11. end while

 complexity:{Cormen, 2002 #8}

the worst case of Boyer-Moore algorithm is O((n − m + 1)m)

but in general this algorithm has sub liner run time which is O(n/m) so we can say that it is
the fastest algorithm between the ones we studied. but when we search for a short pattern
the Boyer- Moore algorithm is not very good because it depends on the repetition of
characters in the pattern and when the pattern is short the chance of repeating characters is
very low.

Results and Conclusion
As we saw in this research, we have a lot of string matching algorithms that can do the same
mission but with different specification.

The naïve algorithm is the simplest algorithm, but it takes more time than the others so it is
very good in the simple applications that don’t have a long pattern to search for.

But for the real applications that needs very fast processing and has a long pattern to search
for in a very long text, the Boyer-Moore and the KMP algorithms are the best ones,
especially if we have a small alphabet (as when we search for a pattern in a sequence of
DNA the alphabet is only (G, T, C, A)) because we have a lot of repeated chars in the
pattern that gives us higher chance to skip useless shifts, but when we want to search for a
short pattern, the Boyer-Moore and the KMP algorithms won’t be efficient enough,
because their preprocessing functions depend on repeating characters in the pattern but for
a short pattern the probability of repeating characters will be very low especially if we have
a big alphabet. So in this case the best algorithm of the ones we study in this research is the
Rabin-Karp algorithm.

The algorithm Preprocessing
time

matching time

Naïve 0 O((n − m + 1)m)
Rabin-Karp O(m) Worst case O((n − m + 1)m)

Best case O(n)
KMP O(m) O(n)
Boyer Moore O(m) Worst case O((n − m + 1)m)

best case O(n/m)

References
1. Cormen, T.H., C. E.leiserson, and C. Stein, String Matching, in Introduction To

Algorithms. 2002, The MIT Press. p. 906-933.
2. Crochemore, M., W. Rytter, and M. Crochemore, Text algorithms. Vol. 698.

1994: World Scientific.
3. Aho, A.V. and M.J. Corasick, Efficient string matching: an aid to bibliographic

search. Communications of the ACM, 1975. 18(6): p. 333-340.
4. Boyer, R.S. and J.S. Moore, A fast string searching algorithm. Communications of

the ACM, 1977. 20(10): p. 762-772.

