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The Introduction 
The introduction to information theory is quite simple. The invention of writing 

occurred 5000 years ago, but no other culture thought of manipulating the written data 
more than the people of IT revolution. Coding makes our life easier, creates huge hopes in 
domains of security, compression and data transmission. No other introduction to coding 
would be more decent than the string matching theory. A variety of algorithms were 
discussed during this paper 

Abstract 

We formalize the string-matching problem as follows. We assume that the text is an array T 
[1 . . n] of length n and that the pattern is an array P[1 . . m] of length m ≤ n. We further 
assume that the elements of P and T are characters drawn from a finite alphabet . For 
example, we may have  = {0,1} or  = {a, b,..., z}. The character arrays P and T are often 
called strings of characters. We say that pattern P occurs with shift s in text T (or, 
equivalently, that pattern P occurs beginning at position s + 1 in text T ) if 0 ≤ s ≤ n − m 
and T [s + 1 . .s + m] = P[1 . . m] (that is, if T [s + j] = P[j], for 1 ≤ j ≤ m). If P occurs with 
shift s in T , then we call s a valid shift; otherwise, we call s an invalid shift. The string-
matching problem is the problem of finding all valid shifts with which a given pattern P 
occurs in a given text T. and in this research we will study the most important algorithms 
that do this mission 
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Figure 1 an example of the naïve string matcher 

The string matching algorithms and its importance 

Finding all occurrences of a pattern in a text is a problem that arises frequently in text-
editing programs. Typically, the text is a document being edited, and the pattern searched 
for is a particular word supplied by the user. Efficient algorithms for this problem can 
greatly aid the responsiveness of the text-editing program. String-matching algorithms are 
also used, for example, to search for particular patterns in DNA sequences. 

The naive string-matching [1]  

The brute force algorithm consists in checking, at all positions in the text between 0 and n-
m 

The naive string-matching procedure can be interpreted graphically as sliding a “template” 
containing the pattern over the text, noting for which shifts all of the characters on the 

template equal the corresponding characters in the text, as illustrated 

 
Matching steps: 

1. n ← length[T ] 
2. m ← length[P] 
3. for s ← 0 to n − m 
4.         do if P[1 . .m] = T [s + 1 . . s + m] 
5.                   then print “Pattern occurs with shift” s 



First there is a for loop that considers each possible shift explicitly. Then there is a test to 
determine whether the current shift is valid or not(4); this test involves an implicit loop(4) 
to check corresponding character positions 

Complexity: 
Procedure NAIVE-STRING-MATCHER takes time O((n − m + 1)m), and this 

bound is tight in the worst case. For example, consider the text string an (a string 

of n a’s) and the pattern am. For each of the n−m+1 possible values of the shift s, 

the implicit loop on line 4 to compare corresponding characters must execute m 

times to validate the shift. The worst-case running time is thus O((n − m + 1)m), 

which is O(n2) if m = [n/2]. The running time of NAIVE-STRING-MATCHER is 

equal to its matching time, since there is no preprocessing. 

As we shall see, NAIVE-STRING-MATCHER is the simplest way to match a pattern 
with a text because it just depends on one loop and it doesn’t require any preprocessing 
functions for the pattern and the text, but it is inefficient because information gained about 
the text for one value of s is entirely ignored in considering other values of s. Such 
information can be very valuable, however. For example, if P = aaab and we find that s = 0 
is valid (where (s) is the first index of the matching text), then none of the shifts 1, 2, or 3 
are valid, since T [4] = b. In the following sections, we examine several ways to make effective 

use of this sort of information. The algorithm can be designed to stop on either the first 
occurrence of the pattern, or upon reaching the end of the text. 

 

 

 

 

 

 

 



 

Karp-Rabin algorithm 
Let’s view a string of k consecutive characters as representing a length-k decimal number. 
The character string 31415 thus corresponds to the decimal number 31,415. Given the dual 

interpretation of the input characters as both graphical symbols and digits, we find 

it convenient in this section to denote them as we would digits, in our standard text 

font. 

 

String to integer converter (Horner’s rule)  [1] 

Given a pattern P [1 . .m], we let p denote its corresponding decimal value. In 

a similar manner, given a text T [1 . . n], we let 𝑡𝑠  denote the decimal value of the 

length-m substring T [s + 1 . . s + m], for s = 0, 1, . . . , n − m. Certainly, 𝑡𝑠 = p 

if and only if T [s + 1 . . s + m] = P[1 . .m]; thus, s is a valid shift if and only 

if 𝑡𝑠 = p.  

We can compute p in time O(m) using Horner’s rule 

      p = P[m] + 10 P[m − 1] + 102P[m − 2]+· · ·+10𝑚−1P[2] + 10𝑚P[1] 

The value t0 can be similarly computed from T [1 . . m] in time O(m). 

To compute the remaining values 𝑡1, 𝑡2, . . . , 𝑡𝑛−𝑚in time O(n−m), it suffices to 

observe that ts+1 can be computed from 𝑡𝑠 in constant time, since 

𝑡𝑠+1 = 10(𝑡𝑠 − 10m−1T [s + 1]) + T [s + m + 1] . 

For example, if m = 5 and 𝑡𝑠 = 31415, then we wish to remove the high-order digit 

T [s +1] = 3 and bring in the new low-order digit (suppose it is T [s +5+g1] = 2) 



to obtain 𝑡𝑠+1= 10(31415 − 10000 · 3) + 2 = 14152 . 

 

Subtracting 10m−1T [s +1] removes the high-order digit from 𝑡𝑠 , multiplying the 

result by 10 shifts the number left one position, and adding T [s +m +1] brings in 

the appropriate low-order digit. The only difficulty with this procedure is that p and 𝑡𝑠 
may be too large to work with conveniently. If P contains m characters, then assuming that 
each arithmetic operation on p (which is m digits long) takes “constant time” is 
unreasonable. Fortunately, there is a simple cure for this problem, compute p and the𝑡𝑠’s 
modulo a suitable modulus q 

The modulus q is typically chosen as a prime such that 10q just fits within one computer 
word, which allows all the necessary computations to be performed with single-precision 
arithmetic. In general, with a d-array alphabet {0, 1, . . . , d − 1}, we choose q so that dq 
fits within a computer word and adjust the recurrence equation to work modulo q, so that 
it becomes 

𝑡𝑠+1= (d (𝑡𝑠− T [s + 1]h) + T [s + m + 1]) mod q, 

Figure 2 calculating t(s+1) using t(s) 

Figure 3an example of Karp-Rabin matcher and  the spurios hit 



The solution of working modulo q is not perfect, however, since 𝑡𝑠≡ p (mod q) does not 
imply that 𝑡𝑠 = p. On the other hand, if 𝑡𝑠≡ p (mod q), then we definitely have that 𝑡𝑠= p, 
so that shift s is invalid. We can thus use the test 𝑡𝑠≡ p (mod q) as a fast heuristic test to rule 
out invalid shifts s. Any shift s for which 𝑡𝑠≡ p (mod q) must be tested further to see if s is 
really valid or we just have a spurious hit. This testing can be done by explicitly checking 
the condition P[1 . .m] = T [s + 1 . . s + m]. If q is large enough, then we can hope that spurious 

hits occur infrequently enough that the cost of the extra checking is low. 

Matching steps [2] 

1 n ← length[T ] 

2 m ← length[P] 

3 h ← dm−1 mod q 

4 p ← 0 

5 t0 ← 0 

6 for i ← 1 to m do                           (Preprocessing). 

7  p ← (dp + P[i ]) mod q 

8 t0 ← (dt0 + T [i ]) mod q end for 

9 for s ← 0 to n – m do                          ( Matching) 

10 if p = 𝑡𝑠 then 

11 if P[1 . .m] = T [s + 1 . . s + m] then 

12  print s end if end if  

13 if s < n – m then 

14  𝑡𝑠+1← (d(𝑡𝑠− T [s + 1]h) + T [s + m + 1]) mod q end if end for 

The procedure RABIN-KARP-MATCHER works as follows. All characters are 
interpreted as radix-d digits. The subscripts on t are provided only for clarity; the program 
works correctly if all the subscripts are dropped. Line 3 initializes h to the value of the high 
order digit position of an m-digit window. Lines 4–8 compute p as the value of P[1 . .m] 



mod q and t0 as the value of T [1 . .m] mod q. The for loop of lines 9–14 iterates through 
all possible shifts s, maintaining the following invariant: Whenever line 10 is executed, 𝑡𝑠 = 
T [s + 1 . . s + m] mod q. If p = 𝑡𝑠 in line 10 (a “hit”), then we check to see if P[1 . . m] = T 
[s +1 . . s +m] in line 11 to rule out the possibility of a spurious hit. Any valid shifts found 
are printed out on line 12. If s < n − m (checked in line 13), then the for loop is to 

be executed at least one more time, and so line 14 is first executed to ensure that the loop 
invariant holds when line 10 is again reached. Line 14 computes the value of 𝑡𝑠+1 mod q 
from the value of 𝑡𝑠 mod q in constant time. 

 

Complexity [1] 

RABIN-KARP-MATCHER takes O(m) preprocessing time, and its matching time 

is O((n − m + 1)m) in the worst case, since (like the naive string-matching algorithm) 

the Rabin-Karp algorithm explicitly verifies every valid shift. If P = 𝑎𝑚 

and T = 𝑎𝑛, then the verifications take time O((n − m + 1)m), since each of the 

n − m + 1 possible shifts is valid. 

In many applications, we expect few valid shifts (perhaps some constant c of 
them); in these applications, the expected matching time of the algorithm is only 
O((n − m + 1) + cm) = O(n+m), plus the time required to process spurious hits. 

Although the O ((n − m + 1)m) worst-case running time of this algorithm is no better than 
that of the naive method, it works much better on average and in practice. It also 
generalizes nicely to other pattern-matching problems. 

 

 

 
 



Knuth-Morris-Pratt algorithm 
We now present a linear-time string-matching algorithm due to Knuth, Morris, and Pratt. 
Their algorithm depends on an auxiliary function called The prefix function π. It 
encapsulates knowledge about how the pattern matches against shifts of itself. This 
information can be used to avoid testing useless shifts in the naive pattern-matching 
algorithm 

The prefix( π )function for a pattern [3] 

Consider the operation of the naive string matcher. That uses a particular shift s of a 
template containing the pattern P = ababaca against a text T for this example, q = 5 of the 
characters have matched successfully, but the 6th pattern character fails to match the 
corresponding text character. The information that q characters have matched successfully 
determines the corresponding text characters. Knowing these q text characters allows us to 
determine immediately that certain shifts are invalid. In the example of the figure, the shift s 
+ 1 is 
necessarily invalid, since the first pattern character (a) would be aligned with a text 
character that is known to match with the second pattern character (b). The shift s= s + 2 
shown in part (b) of the figure, however, aligns the first three pattern characters with three 
text characters that must necessarily match. 
 

Figure 4 skipping the shifts that must necessarily match the 
characters of text the using the prefix compute function 



In the figure below, for the pattern P = ababababca and q = 8. 
(a) The π function for the given pattern. Since π[8] = 6, π[6] = 4, π[4] = 2, and π[2] = 0, 
by iterating π we obtain π∗[8] = {6, 4, 2, 0}. (b) We slide the template containing the 
pattern P to the right and note when some prefix 𝑃𝑘 of P matches up with some proper 
suffix of P8; this happens for k = 6, 4, 2, and 0. In the figure, the first row gives P, and the 
dotted vertical line is drawn just after P8. Successive rows show all the shifts of P that cause 
some prefix 𝑃𝑘 of P to match some suffix of P8. Successfully matched characters are shown 
shaded. Vertical lines connect aligned matching characters. 
 

portion of the text, it is a suffix of the string 𝑃𝑞 . Equation (32.5) can therefore be 

interpreted as asking for the largest k < q Then, s’= s+(q−k) is the next potentially valid 
shift. 

This information can be used to speed up both the naive string-matching algorithm and 
the finite-automaton matcher. 

 
 
 
 

 

Figure 5 an example of KMP matcher 



Matching steps [1] 

KMP-MATCHER(T, P)  

1. m ← length[P]  
2. n ←length [T] 
3. π ←COMPUTE-PREFIX-FUNCTION(p) 
3.  i←0, j←0  
4. while(i+m<=n)do  
5. while(t[i+j]==p[j])do  
6. j←j+1  
7. if(j>=m)  
8. return i end while 
9. i←i+ max( j-π [j-1],0) 
10.  j = π [j-1]end  while 
11.   return -1 

COMPUTE-PREFIX-FUNCTION(P) 

1. m ← length[P]  
2. π[1] ← 0 
3. k ← 0 
4. for q ← 2 to m do  
5. while k > 0 and P[k + 1] ~= P[q] do 
6. k ← π[k] end while 
7. if P[k + 1] ==P[q] then  
8. k ← k + 1 end if 
9. π[q] ← k end for 
10. return π 

max(a,b) 

1. if  a>b 
2. return a 
3. else 
4. return a  



Complexity  [3] 

The running time of COMPUTE-PREFIX-FUNCTION is O (m). 

and the average run time of the KMP matcher is O(n). 

but when we search for a short pattern the KMP algorithm is not very good because it 
depends on the repetition of characters in the pattern and when the pattern is short the 
chance of repeating characters is very low.    

Boyer-Moore algorithm 
The Boyer-Moore algorithm is designed to skip the highest number of useless shifts using 
the right to left scan, the bad character rule and the good suffix rule. These three ideas can 
make the matching process faster and more convenient while searching in a long text 
because they help to skip a lot of failing matching attempts. 

Right-to-left scan:[4] 

Instead of scanning the pattern from the left to the right, this algorithm starts scanning from 
the right. 

Bad character rule:[4] 

we use this rule when a mismatch occurs, so we use the knowledge of the mismatched 
character to skip alignments. 

Let character (b) be the mismatched character in text (T). so we skip alignments until (b) 
matches its opposite in pattern(P) or (P) moves past (b).  

 

 

Figure 6 skipping shifts using the bad character rule 



Good suffix rule:[4] 

When some characters are matched, we can use the knowledge of the matched characters 
to skip alignments. 

Suppose that for some alignment of (P) and (T), substring (t) of (T) matches a suffix of (P), 
but a mismatch occurs at the next position. Find the rightmost copy (t’) of (t) in (P) such 
that (t’) is not a suffix of (P) and the character to the left of (t’) in (P) differs from the 

character to the left of (t) in (P). Shift (P) so that (t’) in (P) is aligned with(t) in (T). 

If there is no such t’, shift the left end of P past the left end of t in T by the least amount so 
that a prefix of the shifted pattern matches a suffix of t in T.  

If no such shift is possible, shift P by n places to the right. 

Figure 7 skipping useless shifts using the good suffix rule 

Figure 9 using the good suffix rule to shift the pattern to the right place 

Figure 8using the good suffix rule to shift the pattern to the right place 



If an occurrence of P is found, shift P by the least amount so that a proper prefix of the 
shifted P matches a suffix of the occurrence of P in T. If no such shift is possible, shift P by 
n places to the right 

 

Putting it together [4] 

After each alignment, use bad character or good suffix rule, whichever skips more  

 

 

 

 

Figure 10 using the good suffix rule to shift the pattern to the right place 

Figure 11 an example of the Boyer-Moore matcher 



 

Matching steps:[2] 

bmInitocc() 

1. char a; int j; 
2. for a←0 to alphabetsize 
3. occ[a]=-1; 
4. for j←0 to m-1 
5. do a=p[j] 
6. occ[a]=j end for 

bmPreprocess1() 

1. i←m, j←m+1 
2. f[i] ←j; 
3. while i>0 do 
4. while j<=m and p[i-1]~= p[j-1]) do 
5. If s[j]==0  
6. s[j]=j-i 
7. j=f[j] end while 
8. i=i-1  
9. j=j-1 
10. f[i]=j; end while 

bmPreprocess2 

1. j←f[0] 
2. for i←0 to m do 
3. if s[i]==0  
4. then s[i] ←j 
5. if i==j 
6. then  j=f[j] 
7.  end for 

max(a,b) 



1. if  a>b 
2. return a 
3. else 
4. return a  

 

 

bmSearch() 

1. i←0 
2. while i<=n-m do 
3. j←m-1  
4. while j>=0 and p[j]==t[i+j] do 
5. j-- 
6. if  j<0 then 
7. return i 
8. i←i+s[0] end if 
9. else  
10. i←i+max(s[j+1], j-occ[t[i+j]]) end while 
11. end while 

 complexity:{Cormen, 2002 #8} 

the worst case of Boyer-Moore algorithm is O((n − m + 1)m) 

but in general this algorithm has sub liner run time which is O(n/m) so we can say that it is 
the fastest algorithm between the ones we studied.  but when we search for a short pattern 
the Boyer- Moore algorithm is not very good because it depends on the repetition of 
characters in the pattern and when the pattern is short the chance of repeating characters is 
very low. 

 

 
 



Results and Conclusion 
As we saw in this research, we have a lot of string matching algorithms that can do the same 
mission but with different specification. 

The naïve algorithm is the simplest algorithm, but it takes more time than the others so it is 
very good in the simple applications that don’t have a long pattern to search for. 

But for the real applications that needs very fast processing and has a long pattern to search 
for in a very long text, the Boyer-Moore and the KMP  algorithms are the best ones, 
especially if we have a small alphabet (as when we search for a pattern in a sequence of 
DNA the alphabet is only (G, T, C, A)) because we have a lot of repeated chars in the 
pattern that gives us higher chance to skip useless shifts, but when we want to search for a 
short pattern, the Boyer-Moore and the KMP algorithms won’t be efficient enough, 
because their preprocessing functions depend on repeating characters in the pattern but for 
a short pattern the probability  of repeating characters will be very low especially if we have 
a big alphabet. So in this case the best algorithm of the ones we study in this research is the 
Rabin-Karp algorithm.  

  

The algorithm Preprocessing 
time 

matching time 

Naïve 0 O((n − m + 1)m) 
Rabin-Karp O(m) Worst case O((n − m + 1)m) 

Best case O(n) 
KMP O(m) O(n) 
Boyer Moore O(m) Worst case O((n − m + 1)m) 

best case O(n/m) 
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